3.2.20 \(\int \frac {\log (d (e+f \sqrt {x})^k) (a+b \log (c x^n))}{x^3} \, dx\) [120]

3.2.20.1 Optimal result
3.2.20.2 Mathematica [A] (verified)
3.2.20.3 Rubi [A] (verified)
3.2.20.4 Maple [F]
3.2.20.5 Fricas [F]
3.2.20.6 Sympy [F(-1)]
3.2.20.7 Maxima [F]
3.2.20.8 Giac [F]
3.2.20.9 Mupad [F(-1)]

3.2.20.1 Optimal result

Integrand size = 28, antiderivative size = 346 \[ \int \frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx=-\frac {7 b f k n}{36 e x^{3/2}}+\frac {3 b f^2 k n}{8 e^2 x}-\frac {5 b f^3 k n}{4 e^3 \sqrt {x}}+\frac {b f^4 k n \log \left (e+f \sqrt {x}\right )}{4 e^4}-\frac {b n \log \left (d \left (e+f \sqrt {x}\right )^k\right )}{4 x^2}-\frac {b f^4 k n \log \left (e+f \sqrt {x}\right ) \log \left (-\frac {f \sqrt {x}}{e}\right )}{e^4}-\frac {b f^4 k n \log (x)}{8 e^4}+\frac {b f^4 k n \log ^2(x)}{8 e^4}-\frac {f k \left (a+b \log \left (c x^n\right )\right )}{6 e x^{3/2}}+\frac {f^2 k \left (a+b \log \left (c x^n\right )\right )}{4 e^2 x}-\frac {f^3 k \left (a+b \log \left (c x^n\right )\right )}{2 e^3 \sqrt {x}}+\frac {f^4 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^4}-\frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{2 x^2}-\frac {f^4 k \log (x) \left (a+b \log \left (c x^n\right )\right )}{4 e^4}-\frac {b f^4 k n \operatorname {PolyLog}\left (2,1+\frac {f \sqrt {x}}{e}\right )}{e^4} \]

output
-7/36*b*f*k*n/e/x^(3/2)+3/8*b*f^2*k*n/e^2/x-1/8*b*f^4*k*n*ln(x)/e^4+1/8*b* 
f^4*k*n*ln(x)^2/e^4-1/6*f*k*(a+b*ln(c*x^n))/e/x^(3/2)+1/4*f^2*k*(a+b*ln(c* 
x^n))/e^2/x-1/4*f^4*k*ln(x)*(a+b*ln(c*x^n))/e^4+1/4*b*f^4*k*n*ln(e+f*x^(1/ 
2))/e^4+1/2*f^4*k*(a+b*ln(c*x^n))*ln(e+f*x^(1/2))/e^4-b*f^4*k*n*ln(-f*x^(1 
/2)/e)*ln(e+f*x^(1/2))/e^4-1/4*b*n*ln(d*(e+f*x^(1/2))^k)/x^2-1/2*(a+b*ln(c 
*x^n))*ln(d*(e+f*x^(1/2))^k)/x^2-b*f^4*k*n*polylog(2,1+f*x^(1/2)/e)/e^4-5/ 
4*b*f^3*k*n/e^3/x^(1/2)-1/2*f^3*k*(a+b*ln(c*x^n))/e^3/x^(1/2)
 
3.2.20.2 Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 359, normalized size of antiderivative = 1.04 \[ \int \frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx=-\frac {12 a e^3 f k \sqrt {x}+14 b e^3 f k n \sqrt {x}-18 a e^2 f^2 k x-27 b e^2 f^2 k n x+36 a e f^3 k x^{3/2}+90 b e f^3 k n x^{3/2}+36 a e^4 \log \left (d \left (e+f \sqrt {x}\right )^k\right )+18 b e^4 n \log \left (d \left (e+f \sqrt {x}\right )^k\right )+18 a f^4 k x^2 \log (x)+9 b f^4 k n x^2 \log (x)-36 b f^4 k n x^2 \log \left (1+\frac {f \sqrt {x}}{e}\right ) \log (x)-9 b f^4 k n x^2 \log ^2(x)+12 b e^3 f k \sqrt {x} \log \left (c x^n\right )-18 b e^2 f^2 k x \log \left (c x^n\right )+36 b e f^3 k x^{3/2} \log \left (c x^n\right )+36 b e^4 \log \left (d \left (e+f \sqrt {x}\right )^k\right ) \log \left (c x^n\right )+18 b f^4 k x^2 \log (x) \log \left (c x^n\right )-18 f^4 k x^2 \log \left (e+f \sqrt {x}\right ) \left (2 a+b n-2 b n \log (x)+2 b \log \left (c x^n\right )\right )-72 b f^4 k n x^2 \operatorname {PolyLog}\left (2,-\frac {f \sqrt {x}}{e}\right )}{72 e^4 x^2} \]

input
Integrate[(Log[d*(e + f*Sqrt[x])^k]*(a + b*Log[c*x^n]))/x^3,x]
 
output
-1/72*(12*a*e^3*f*k*Sqrt[x] + 14*b*e^3*f*k*n*Sqrt[x] - 18*a*e^2*f^2*k*x - 
27*b*e^2*f^2*k*n*x + 36*a*e*f^3*k*x^(3/2) + 90*b*e*f^3*k*n*x^(3/2) + 36*a* 
e^4*Log[d*(e + f*Sqrt[x])^k] + 18*b*e^4*n*Log[d*(e + f*Sqrt[x])^k] + 18*a* 
f^4*k*x^2*Log[x] + 9*b*f^4*k*n*x^2*Log[x] - 36*b*f^4*k*n*x^2*Log[1 + (f*Sq 
rt[x])/e]*Log[x] - 9*b*f^4*k*n*x^2*Log[x]^2 + 12*b*e^3*f*k*Sqrt[x]*Log[c*x 
^n] - 18*b*e^2*f^2*k*x*Log[c*x^n] + 36*b*e*f^3*k*x^(3/2)*Log[c*x^n] + 36*b 
*e^4*Log[d*(e + f*Sqrt[x])^k]*Log[c*x^n] + 18*b*f^4*k*x^2*Log[x]*Log[c*x^n 
] - 18*f^4*k*x^2*Log[e + f*Sqrt[x]]*(2*a + b*n - 2*b*n*Log[x] + 2*b*Log[c* 
x^n]) - 72*b*f^4*k*n*x^2*PolyLog[2, -((f*Sqrt[x])/e)])/(e^4*x^2)
 
3.2.20.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 331, normalized size of antiderivative = 0.96, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {2823, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f \sqrt {x}\right )^k\right )}{x^3} \, dx\)

\(\Big \downarrow \) 2823

\(\displaystyle -b n \int \left (\frac {k \log \left (e+f \sqrt {x}\right ) f^4}{2 e^4 x}-\frac {k \log (x) f^4}{4 e^4 x}-\frac {k f^3}{2 e^3 x^{3/2}}+\frac {k f^2}{4 e^2 x^2}-\frac {k f}{6 e x^{5/2}}-\frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right )}{2 x^3}\right )dx-\frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f \sqrt {x}\right )^k\right )}{2 x^2}+\frac {f^4 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^4}-\frac {f^4 k \log (x) \left (a+b \log \left (c x^n\right )\right )}{4 e^4}-\frac {f^3 k \left (a+b \log \left (c x^n\right )\right )}{2 e^3 \sqrt {x}}+\frac {f^2 k \left (a+b \log \left (c x^n\right )\right )}{4 e^2 x}-\frac {f k \left (a+b \log \left (c x^n\right )\right )}{6 e x^{3/2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (a+b \log \left (c x^n\right )\right ) \log \left (d \left (e+f \sqrt {x}\right )^k\right )}{2 x^2}+\frac {f^4 k \log \left (e+f \sqrt {x}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 e^4}-\frac {f^4 k \log (x) \left (a+b \log \left (c x^n\right )\right )}{4 e^4}-\frac {f^3 k \left (a+b \log \left (c x^n\right )\right )}{2 e^3 \sqrt {x}}+\frac {f^2 k \left (a+b \log \left (c x^n\right )\right )}{4 e^2 x}-\frac {f k \left (a+b \log \left (c x^n\right )\right )}{6 e x^{3/2}}-b n \left (\frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right )}{4 x^2}+\frac {f^4 k \operatorname {PolyLog}\left (2,\frac {\sqrt {x} f}{e}+1\right )}{e^4}-\frac {f^4 k \log ^2(x)}{8 e^4}-\frac {f^4 k \log \left (e+f \sqrt {x}\right )}{4 e^4}+\frac {f^4 k \log \left (e+f \sqrt {x}\right ) \log \left (-\frac {f \sqrt {x}}{e}\right )}{e^4}+\frac {f^4 k \log (x)}{8 e^4}+\frac {5 f^3 k}{4 e^3 \sqrt {x}}-\frac {3 f^2 k}{8 e^2 x}+\frac {7 f k}{36 e x^{3/2}}\right )\)

input
Int[(Log[d*(e + f*Sqrt[x])^k]*(a + b*Log[c*x^n]))/x^3,x]
 
output
-1/6*(f*k*(a + b*Log[c*x^n]))/(e*x^(3/2)) + (f^2*k*(a + b*Log[c*x^n]))/(4* 
e^2*x) - (f^3*k*(a + b*Log[c*x^n]))/(2*e^3*Sqrt[x]) + (f^4*k*Log[e + f*Sqr 
t[x]]*(a + b*Log[c*x^n]))/(2*e^4) - (Log[d*(e + f*Sqrt[x])^k]*(a + b*Log[c 
*x^n]))/(2*x^2) - (f^4*k*Log[x]*(a + b*Log[c*x^n]))/(4*e^4) - b*n*((7*f*k) 
/(36*e*x^(3/2)) - (3*f^2*k)/(8*e^2*x) + (5*f^3*k)/(4*e^3*Sqrt[x]) - (f^4*k 
*Log[e + f*Sqrt[x]])/(4*e^4) + Log[d*(e + f*Sqrt[x])^k]/(4*x^2) + (f^4*k*L 
og[e + f*Sqrt[x]]*Log[-((f*Sqrt[x])/e)])/e^4 + (f^4*k*Log[x])/(8*e^4) - (f 
^4*k*Log[x]^2)/(8*e^4) + (f^4*k*PolyLog[2, 1 + (f*Sqrt[x])/e])/e^4)
 

3.2.20.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2823
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_. 
)]*(b_.))*((g_.)*(x_))^(q_.), x_Symbol] :> With[{u = IntHide[(g*x)^q*Log[d* 
(e + f*x^m)^r], x]}, Simp[(a + b*Log[c*x^n])   u, x] - Simp[b*n   Int[1/x 
 u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, r, m, n, q}, x] && (IntegerQ[(q 
+ 1)/m] || (RationalQ[m] && RationalQ[q])) && NeQ[q, -1]
 
3.2.20.4 Maple [F]

\[\int \frac {\left (a +b \ln \left (c \,x^{n}\right )\right ) \ln \left (d \left (e +f \sqrt {x}\right )^{k}\right )}{x^{3}}d x\]

input
int((a+b*ln(c*x^n))*ln(d*(e+f*x^(1/2))^k)/x^3,x)
 
output
int((a+b*ln(c*x^n))*ln(d*(e+f*x^(1/2))^k)/x^3,x)
 
3.2.20.5 Fricas [F]

\[ \int \frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} \log \left ({\left (f \sqrt {x} + e\right )}^{k} d\right )}{x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))*log(d*(e+f*x^(1/2))^k)/x^3,x, algorithm="fricas 
")
 
output
integral((b*log(c*x^n) + a)*log((f*sqrt(x) + e)^k*d)/x^3, x)
 
3.2.20.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx=\text {Timed out} \]

input
integrate((a+b*ln(c*x**n))*ln(d*(e+f*x**(1/2))**k)/x**3,x)
 
output
Timed out
 
3.2.20.7 Maxima [F]

\[ \int \frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} \log \left ({\left (f \sqrt {x} + e\right )}^{k} d\right )}{x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))*log(d*(e+f*x^(1/2))^k)/x^3,x, algorithm="maxima 
")
 
output
-1/36*(18*b*e*log(d)*log(x^n) + 18*a*e*log(d) + 9*(e*n*log(d) + 2*e*log(c) 
*log(d))*b + 9*(2*b*e*log(x^n) + (e*n + 2*e*log(c))*b + 2*a*e)*log((f*sqrt 
(x) + e)^k) + (6*b*f*k*x*log(x^n) + (6*a*f*k + (7*f*k*n + 6*f*k*log(c))*b) 
*x)/sqrt(x))/(e*x^2) - integrate(1/8*(2*b*f^2*k*log(x^n) + 2*a*f^2*k + (f^ 
2*k*n + 2*f^2*k*log(c))*b)/(e*f*x^(5/2) + e^2*x^2), x)
 
3.2.20.8 Giac [F]

\[ \int \frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx=\int { \frac {{\left (b \log \left (c x^{n}\right ) + a\right )} \log \left ({\left (f \sqrt {x} + e\right )}^{k} d\right )}{x^{3}} \,d x } \]

input
integrate((a+b*log(c*x^n))*log(d*(e+f*x^(1/2))^k)/x^3,x, algorithm="giac")
 
output
integrate((b*log(c*x^n) + a)*log((f*sqrt(x) + e)^k*d)/x^3, x)
 
3.2.20.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\log \left (d \left (e+f \sqrt {x}\right )^k\right ) \left (a+b \log \left (c x^n\right )\right )}{x^3} \, dx=\int \frac {\ln \left (d\,{\left (e+f\,\sqrt {x}\right )}^k\right )\,\left (a+b\,\ln \left (c\,x^n\right )\right )}{x^3} \,d x \]

input
int((log(d*(e + f*x^(1/2))^k)*(a + b*log(c*x^n)))/x^3,x)
 
output
int((log(d*(e + f*x^(1/2))^k)*(a + b*log(c*x^n)))/x^3, x)